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1 Introduction 
Matrix equations [1]-[3] play a fundamental role in 

many tasks in control theory.  Lyapunov equations 

play a very important role in stability theory of 

continuous systems [4] and discrete systems [4], [5].  

The continuous Lyapunov equation is associated 

with continuous state space systems.   

Continuous Lyapunov equation 

Consider the n × n real square matrices F, Q, 
where Q is symmetric and nonnegative definite. The 

continuous Lyapunov equation is 

F ∙ X + X ∙ FT = −Q               (1.1) 

where the solution X is an n × n real square 

symmetric nonnegative definite matrix. FT denotes 

the transpose of F. 

Existence and uniqueness of solution.  

Let λi, i = 1 … n be the eigenvalues of  F. The 

continuous Lyapunov equation (1.1) has a unique 

symmetric nonnegative definite solution X if and 

only if λi ≠ −λj for all i, j = 1, … , n, [2]. 

The discrete Lyapunov equation is associated 

with discrete state space systems. 

Discrete Lyapunov equation 

Consider the n × n real square matrices F, Q,  
where Q is  symmetric and nonnegative definite. 

The discrete Lyapunov equation is 

X = Q + F ∙ X ∙ FT                                       (1.2) 

where the solution X is an n × n real square 

symmetric nonnegative definite matrix. 

Existence and uniqueness of solution.  

Let λi, i = 1 … n be the eigenvalues of F. The 

discrete Lyapunov equation (1.2) has an unique 

symmetric nonnegative definite solution X if and 

only if |λi| < 1 for all i = 1, … , n. 

In the literature [6]-[9] there exist iterative as 

well as algebraic solutions of the continuous 

Lyapunov equation (for instance Arnoldi method, 

Smith’s algorithm, Hessenberg-Shur method).  

In the literature [5] there exist iterative as well as 

algebraic solutions of the discrete Lyapunov 

equation (for instance Chandrasekhar type 

algorithms, doubling algorithm, Vaughan’s 

algebraic non-recursive solution). 

Both continuous and discrete Lyapunov 

equations are equivalent to linear systems of 

equations. Thus solutions via the vec operator are 

derived. Classical closed forms solutions using the 

vec operator are briefly presented in section II.  

In this paper, new closed forms are proposed for 

the solutions of the continuous and discrete 

Lyapunov equations using the operator vech and the 

operator veck, in sections III and IV, respectively. 

The computational requirements of the proposed 

method are determined in section V. It is shown that 

the proposed solutions derived using the vech and 
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veck operators are faster than the classical solutions 

derived using the vec operator. Finally, Section VI 

summarizes the conclusions. 

The novelty of this paper concerns a) the analytic 

determination of the computational requirements of 

the algorithms that use the vec, vech and veck 

operators, with respect to the matrices dimension n, 

b) the derivation of the speedup form the classical 

solution via vec operator to the proposed solutions 

via vech and veck operators.  

 

2 Solutions Using vec Operator 
Lyapunov equations involve matrices. Then we are 

able to use the vec operator, which stacks columns 

of a matrix one under another in a single column. 

Continuous Lyapunov equation 

F ∙ X + X ∙ FT = −Q 

⇒ vec(−Q) = vec(F ∙ X + X ∙ FT) 

                       = vec(F ∙ X ∙ In) + vec(In ∙ X ∙ FT) 

               =(In⨂F) ∙ vec(X) + (F⨂In) ∙ vec(X) 

where Indenotes the he n × n identity matrix, ⨂ is 

the Kronecker product and the following properties 

[10], [11] were used: 

vec(A + B) = vec(A) + vec(B) 

vec(A ∙ B ∙ C) = (CT⨂A) ∙ vec(B) 

Then, defining 

C = In⨂F + F⨂In                          (2.1) 

we get: 

C ∙ vec(X) = −vec(Q)              (2.2) 

Then, if the conditions for the existence of a 

unique solution of the continuous Lyapunov 

equation are satisfied, then the matrix C is 

nonsingular and we get: 

vec(X) = −C−1 ∙ vec(Q)                         (2.3) 

The construction of the solution X from vec(X) is 

trivial. 

Discrete Lyapunov equation 

X = Q + F ∙ X ∙ FT 

⇒ vec(X) = vec(Q + F ∙ X ∙ FT) 

                   = vec(Q) + vec(F ∙ X ∙ FT) 

                   = vec(Q) + (F⨂F) ∙ vec(X) 
Then, defining 

C = In⨂In − F⨂F                                      (2.4) 

we get: 

C ∙ vec(X) = vec(Q)                                      (2.5) 

Then, if the conditions for the existence of a 

unique solution of the discrete Lyapunov equation 

are satisfied, then the matrix C is nonsingular and 

we get: 

vec(X) = C−1 ∙ vec(Q)                                      (2.6) 

The construction of the solution X from vec(X) is 

trivial. 

 

3 Solutions Using vech Operator 
Lyapunov equations involve symmetric matrices. 

Then we are able to use the vech operator, which 

stacks columns of a square matrix one under another 

in a single column, starting each column at its 

diagonal element.  

The relation between the vec operator and the 

vech operator is described using the duplication 

matrix and the elimination matrix. For a symmetric 

matrix S, we also use the n2 ×
n(n+1)

2
 dimensional 

duplication matrix Dn and 
n(n+1)

2
× n2dimensional 

elimination matrix Ln : 

Dn ∙ vech(S) = vec(S)                                      (3.1) 

Ln ∙ vec(S) = vech(S)              (3.2) 

The knowledge of the duplication matrix and the 

elimination matrix allows the derivation of the 

Lyapunov equations via vech operator.  

Continuous Lyapunov equation 

Multiplying (2.2) by Ln using (3.1) and (3.2) we 

get: 

C ∙ vec(Χ) = −vec(Q) 

   ⇒ Ln ∙ C ∙ vec(X) = −Ln ∙ vec(Q)  = −vech(Q) 

   ⇒ Ln ∙ C ∙ Dn ∙ vech(X) = −vech(Q) 
Then, defining 

E = Ln ∙ C ∙ Dn                                                   (3.3) 

we get 

E ∙ vech(X) = −vech(Q)                         (3.4) 

From (3.3) the nonsingularity of  C yields the 

nonsingularity of  Ε, [2]. Hence, the equation in 

(3.4) follows  

vech(X) = −E−1 ∙ vech(Q)                         (3.5) 

The construction of the solution X from vech(X) 

is trivial. 

Discrete Lyapunov equation 

Multiplying (2.5) by Ln using (3.1) and (3.2) we 

get: 

C ∙ vec(Χ) = vec(Q) 

       ⇒ Ln ∙ C ∙ vec(X) = Ln ∙ vec(Q) = vech(Q) 

       ⇒ Ln ∙ C ∙ Dn ∙ vech(X) = vech(Q) 
Then, defining 

E = Ln ∙ C ∙ Dn                                                   (3.6) 

we get 

E ∙ vech(X) = vech(Q)                                      (3.7) 

From (3.6) the nonsingularity of  C yields the 

nonsingularity of  Ε, [2]. Hence, the equation in 

(3.7) follows  

vech(X) = E−1 ∙ vech(Q)                         (3.8) 

The construction of the solution X from vech(X) 

is trivial. 
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4 Solutions Using veck Operator 
Lyapunov equations can be written in a form using 

skew symmetric matrices. Then we are able to use 

the veck operator [12], [13], which functions like 

vech operator and removes the zero elements of the 

main diagonal.  

The relation between the vec operator and the 

veck operator is described using the duplication 

matrix. For a skew symmetric matrix s, we also use 

the n2 ×
n(n−1)

2
 dimensional duplication matrix dn: 

dn ∙ veck(s) = vec(s)                                      (4.1) 
1

2
∙ dn

T ∙ vec(s) = veck(s)                         (4.2) 

The knowledge of the duplication matrix allows the 

derivation of the Lyapunov equations via veck 

operator.  

Continuous Lyapunov equation 

The equivalent formula in (1.1) is written   

F ∙ S + S ∙ FT = −R                                      (4.3) 

where 

S = F ∙ X − X ∙ FT                                      (4.4) 

R = F ∙ Q − Q ∙ FT                                      (4.5) 

are skew symmetric matrices, [14].  

Then, defining 

C = In⨂F + F⨂In                                     (4.6) 

we get: 

C ∙ vec(S) = vec(−R)                                     (4.7) 

Then defining  

D =
1

2
∙ dn

T ∙ C ∙ dn                                     (4.8) 

we get 

D ∙ veck(S) = veck(−R)                        (4.9) 

From (4.8) the nonsingularity of  C yields the 

nonsingularity of D, [2]. Hence, the equation in (4.9) 

follows  

veck(S) = D−1 ∙ veck(−R)                       (4.10) 

The construction of the solution S from veck(S) 

is trivial. 

Finally, the solution of (1.1) is 

X =
1

2
∙ F−1 ∙ (S − Q) = −

1

2
∙ (S + Q) ∙ F−T  (4.11) 

Discrete Lyapunov equation 

Equation (1.2) is equivalent to  

S = R + F ∙ S ∙ FT                                    (4.12) 

where 

S = F ∙ X − X ∙ FT                                    (4.13) 

R = F ∙ Q − Q ∙ FT                                    (4.14) 

are skew symmetric matrices.  

Then, defining 

C = In⨂In − F⨂F                                    (4.15) 

we get: 

C ∙ vec(S) = vec(R)                                    (4.16) 

Then defining  

D =
1

2
∙ dn

T ∙ C ∙ dn                                    (4.17) 

we get 

D ∙ veck(S) = veck(R)                                    (4.18) 

From (4.17) the nonsingularity of  C yields the 

nonsingularity of  D, [2]. Hence, the equation in 

(4.18) follows  

veck(S) = D−1 ∙ veck(R)                       (4.19) 

The construction of the solution S from veck(S) 

is trivial. 

Finally, the solution of (1.2) is 

X = (I − F ∙ F)−1 ∙ (Q − F ∙ S) 

    = (Q + S ∙ FT) ∙ (I − FT ∙ FT)
−1

          (4.20) 

All continuous and discrete Lyapunov equations 

solutions via vec, vech and veck operators are 

summarized in Table I. 

 
TABLE I.  LYAPUNOV EQUATIONS SOLUTIONS VIA VEC, VECH 

AND VECK OPERATORS 

 

Continuous  

Lyapunov 

Equation 

𝐹 ∙ 𝑋 + 𝑋 ∙ 𝐹𝑇 = −𝑄 

Discrete 

 Lyapunov 

Equation 

𝑋 = 𝑄 + 𝐹 ∙ 𝑋 ∙ 𝐹𝑇 

Use  

of  

vec 

𝐶 = 𝐼𝑛⨂𝐹 + 𝐹⨂𝐼𝑛 

𝑣𝑒𝑐(𝑋) = −𝐶−1 ∙ 𝑣𝑒𝑐(𝑄) 

𝐶 = 𝐼𝑛⨂𝐼𝑛 − 𝐹⨂𝐹 

𝑣𝑒𝑐(𝑋) = 𝐶−1 ∙ 𝑣𝑒𝑐(𝑄) 

Use 

 of  

vech 

𝐶 = 𝐼𝑛⨂𝐹 + 𝐹⨂𝐼𝑛 

𝐸 = 𝐿𝑛 ∙ 𝐶 ∙ 𝐷𝑛 

𝑣𝑒𝑐ℎ(𝑋) = −𝐸−1 ∙ 𝑣𝑒𝑐ℎ(𝑄) 

𝐶 = 𝐼𝑛⨂𝐼𝑛 − 𝐹⨂𝐹 

𝐸 = 𝐿𝑛 ∙ 𝐶 ∙ 𝐷𝑛 

𝑣𝑒𝑐ℎ(𝑋) = 𝐸−1 ∙ 𝑣𝑒𝑐ℎ(𝑄) 

Use  

of  

veck 

C = 𝐼𝑛⨂𝐹 + 𝐹⨂𝐼𝑛 

𝑅 = 𝐹 ∙ 𝑄 − 𝑄 ∙ 𝐹𝑇 

𝐷 =
1

2
∙ 𝑑𝑛

𝑇 ∙ 𝐶 ∙ 𝑑𝑛 

𝑣𝑒𝑐𝑘(𝑆) = 𝐷−1 ∙ 𝑣𝑒𝑐𝑘(−𝑅) 

𝑋 =
1

2
∙ 𝐹−1 ∙ (𝑆 − 𝑄) 

      = −
1

2
∙ (𝑆 + 𝑄) ∙ 𝐹−𝑇 

𝐶 = 𝐼𝑛⨂𝐼𝑛 − 𝐹⨂𝐹 

𝑅 = 𝐹 ∙ 𝑄 − 𝑄 ∙ 𝐹𝑇 

𝐷 =
1

2
∙ 𝑑𝑛

𝑇 ∙ 𝐶 ∙ 𝑑𝑛 

𝑣𝑒𝑐𝑘(𝑆) = 𝐷−1 ∙ 𝑣𝑒𝑐𝑘(𝑅) 

𝑋 = (𝐼 − 𝐹 ∙ 𝐹)−1 ∙ (𝑄 − 𝐹 ∙ 𝑆) 

= (𝑄 + 𝑆 ∙ 𝐹𝑇) ∙ (𝐼 − 𝐹𝑇 ∙ 𝐹𝑇)−1 

 

Example 1. Continuous Lyapunov equation. 

A numerical example for an ill-conditioned 

continuous Lyapunov equation is taken from [15] 

with n = 3. Consider the continuous Lyapunov 

equation with 

F = [
1 0 0
1 0.0001 0
1 1 1

] 

Q = − [
2 2.0001 4

2.0001 2.0002 4.0001
4 4.0001 6

] 

Then 

n2 = 9 and C is a 9 × 9 dimensional matrix. 

m = 6 and E is a 6 × 6 dimensional matrix. 

k = 3 and D is a 3 × 3 dimensional matrix. 

The solution of the continuous Lyapunov 

equation is 

X = [
1 1 1
1 1 1
1 1 1

] 

 

Example 2. Discrete Lyapunov equation. 

A numerical example for a linearized model of 

an F-8 aircraft is taken from [15] with n = 4. 

Consider the discrete Lyapunov equation with 
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F = 10−3 ∙ [

998.51 −8.044
0.15659 1000

−0.10886 −0.018697
−0.76232 3.2272

−213.94 0.88081
110.17 −0.37821

897.21 92.826
−445.56 929.68

] 

Q = 0.1 ∙ I4 
Then 

n2 = 16 and C is a 16 × 16 dimensional matrix. 

m = 10 and E is a 10 × 10 dimensional matrix. 

k = 6 and D is a 6 × 6 dimensional matrix. 

The solution of the discrete Lyapunov equation 

is 

X

= [

76.6687 −7.9849 
−7.9849 71.1428

−7.8654 168.2162
3.1292 −15.0098

−7.8654 3.1292
168.2162 −15.0098

1.7374 −17.0180
−17.0180 373.7570

] 

 

5 Computational Requirements 
In order to investigate possible computational 

advantages of the proposed solutions versus the 

classical solutions, we are going to compare them. 

Thus, we compare the algorithms with respect to 

their computational burdens. 

From Table I, it is clear that the Lyapunov 

equations solutions via vec, vech and veck 

operators, involve matrix manipulation operations: 

matrix addition, multiplication and inversion.  

Scalar operations are involved in matrix 

manipulation operations, which are needed for the 

implementation of the solutions. Table II 

summarizes the calculation burden of needed matrix 

operations for the general multidimensional case, 

where ≥ 2, m ≥ 2, k ≥ 2 . The details are given in 

[16].  

 
TABLE II.  CALCULATION BURDEN OF MATRIX OPERATIONS 

Matrix Operation Matrix Dimensions Calculation Burden 

𝑠 ∙ 𝐴, 𝑠 ≠ 0, 𝑠 ≠ 1 𝑛 × 𝑛 𝑛2 

0 ∙ 𝐴 𝑛 × 𝑛 0 

1 ∙ 𝐴 𝑛 × 𝑛 0 

𝐶 = 𝐼𝑛 + 𝐴 (𝑛 × 𝑛) + (𝑛 × 𝑛) 𝑛 

𝐶 = 𝐴 + 𝐵 (𝑛 × 𝑛) + (𝑛 × 𝑛) 𝑛2 

𝐶 = 𝐴 − 𝐴𝑇 (𝑛 × 𝑛) + (𝑛 × 𝑛) 
1

2
𝑛(𝑛 − 1) 

𝐶 = 𝐴 ∙ 𝐵 (𝑛 × 𝑚) ∙ (𝑚 × 𝑘) 2𝑛𝑚𝑘 − 𝑛𝑘 

𝐶−1 𝑛 × 𝑛 
1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

 

Note that the classical solutions that use vec, 

require the computation of the inverse of a matrix 

dimensions N × N where  N = n2, while the 

proposed solutions that use vech, require the 

computation of the inverse of a matrix of 

dimensions  m × m where m =
n(n+1)

2
 and the 

proposed solutions that use veck, require the 

computation of the inverse of a matrix of 

dimensions  k × k where k =
n(n−1)

2
. 

Note that no scalar operations are required in 

order construction the solution X from vec(X) or 

vech(X). 

The calculation burdens of the classical and the 

proposed Lyapunov equations solutions are 

analytically calculated at the Appendix and 

summarized in Table III. 

 
TABLE III.  CALCULATION BURDENS OF LYAPUNOV EQUATIONS 

SOLUTIONS 

Classical solutions – Use of vec 

Matrix Equation Calculation Burden 

Continuous Lyapunov 
16𝑛6 + 15𝑛4 − 7𝑛2

6
 

Discrete Lyapunov 
16𝑛6 + 15𝑛4 − 𝑛2

6
 

Proposed solutions – Use of vech 

Matrix Equation Calculation Burden 

Continuous Lyapunov 
44𝑛6 + 72𝑛5 + 51𝑛4 + 2𝑛3 − 11𝑛2 − 14𝑛

24
 

Discrete Lyapunov 
44𝑛6 + 72𝑛5 + 51𝑛4 + 2𝑛3 + 13𝑛2 − 14𝑛

24
 

Proposed solutions – Use of veck 

Matrix Equation Calculation Burden 

Continuous Lyapunov 
44𝑛6 − 72𝑛5 + 57𝑛4 + 146𝑛3 − 5𝑛2 − 2𝑛

24
 

Discrete Lyapunov 
44𝑛6 − 72𝑛5 + 57𝑛4 + 242𝑛3 − 53𝑛2 + 22𝑛

24
 

 

From Table III, it is clear that the calculation 

burdens of all solutions depend on the matrices 

dimension n. 

From Table III, it is clear that the classical 

solutions via vec operator is of the order of  16

6
n6, 

while the proposed solutions via vech and veck 

operators are of the order of 44

24
n6, and hence the 

proposed solutions are faster than the classical 

solutions. 

The proposed solutions which use vech operator 

are faster than the classical solutions which use vec 

operator, for n ≥ 4. The proposed solutions which 

use veck operator are faster than the classical 

solutions which use vec operator, for n ≥ 2. The 

solutions via veck operator are faster than the 

solutions via vech operator. 

The calculation burdens of the classical and the 

proposed solutions of the continuous Lyapunov 

equation are shown in Fig.1.  

The calculation burdens of the classical and the 

proposed solutions of the discrete Lyapunov 

equation are shown in Fig.2.  

It is clear that from Table III we are able to 

compute the speedup form the classical solution via 

vec operator to the proposed solutions via vech and 
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veck operators, of the continuous as well as the 

discrete Lyapunov equations. 

 

 

Fig. 1 Calculation burden of continuous Lyapunov equation: use 

of vec, vech and veck operators 

 

Fig. 2 Calculation burden of discrete Lyapunov equation: use of 

vec, vech and veck operators 

The speedup form the classical to the proposed 

solution via vech operator of the continuous 

Lyapunov equation tends to the maximum speedup 

as n tends to infinity: 

maxspeedup =
16
6

n6

44
24

n6
=

16

11
= 1.4545            (5.1) 

The speedup form the classical to the proposed 

solution via veck operator of the discrete Lyapunov 

equation tends to the minimum speedup as n tends 

to infinity: 

minspeedup =
16
6

n6

44
24

n6
=

16

11
= 1.4545            (5.2) 

The speedup form the classical solution to the 

proposed solutions of the continuous Lyapunov 

equation are shown in Fig.3. 

The speedup form the classical solution to the 

proposed solutions of the discrete Lyapunov 

equation are shown in Fig.4. 

 

Fig. 3 Speedup of continuous Lyapunov equation solutions 

 

 

Fig. 4 Speedup of discrete Lyapunov equation solutions 

6 Conclusion 
Continuous and discrete Lyapunov equations are 

linear matrix equations, involving n × n 

dimensional matrices. The classical solution uses 

the vec operator. New closed forms are presented 

using the vech operator, due to the fact that 

Lyapunov equations involve symmetric matrices. 

New closed forms are presented using the veck 

operator, due to the fact that Lyapunov equations 

can be written in a form using skew symmetric 

matrices. 

The classical solutions which use the vec 

operator require the inversion of a n2 × n2 

dimensional matrix, while the proposed solutions 

which use the vech operator require the inversion of 
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a 
n(n+1)

2
×

n(n+1)

2
 dimensional matrix and the 

proposed solutions which use the veck operator 

require the inversion of a 
n(n−1)

2
×

n(n−1)

2
 

dimensional matrix.  

The use of vech and veck instead of vec 

decreases the calculation burden. The proposed 

solutions are faster than the classical solutions. The 

proposed solutions which use vech operator are 

faster than the classical solutions which use vec 

operator, for n ≥ 4. The proposed solutions which 

use veck operator are faster than the classical 

solutions which use vec operator, for n ≥ 2. The 

solutions via veck operator are faster than the 

solutions via vech operator. 

The maximum speedup form the classical to the 

proposed solution via vech operator of the 

continuous Lyapunov equation is 1.4545. The 

minimum speedup form the classical to the 

proposed solution via veck operator of the discrete 

Lyapunov equation is 1.4545. 

The main contribution of this paper concerns a) 

the analytic determination of the computational 

requirements of the classical algorithm via vec 

operator and the proposed algorithms via vech and 

veck operators, with respect to the matrices 

dimension n, b) the derivation of the speedup form 

the classical solution via vec operator to the 

proposed solutions via vech and veck operators.  

 

Appendix 
The calculation burdens of the classical and the 

proposed solutions for the general multidimensional 

case, where n ≥ 2, are analytically calculated in 

Tables IV and V. Recall that  N = n2 , m =
n(n+1)

2
 

and k =
n(n−1)

2
. 

 
TABLE IV.  CALCULATION BURDENS OF CONTINUOUS LYAPUNOV 

EQUATIONS SOLUTIONS 

Classical solution – Use of vec 

Matrix Operation Calculation Burden 

𝐼𝑛⨂𝐹 0 

𝐹⨂𝐼𝑛  0 

𝐶 = 𝐼𝑛⨂𝐹 + 𝐹⨂𝐼𝑛 𝑁2 

𝐶−1 
1

6
(16𝑁3 − 3𝑁2 − 𝑁) 

𝑣𝑒𝑐(𝑋) = 𝐶−1 ∙ 𝑣𝑒𝑐(𝑄) 2𝑁2 − 𝑁 

Proposed solution – Use of vech 

Matrix Operation Calculation Burden 

𝐼𝑛⨂𝐹 0 

𝐹⨂𝐼𝑛  0 

𝐶 = 𝐼𝑛⨂𝐹 + 𝐹⨂𝐼𝑛  𝑁2 

𝐿𝑛 ∙ 𝐶 2𝑁2𝑚 − 𝑁𝑚 

Classical solution – Use of vec 

Matrix Operation Calculation Burden 

𝐸 = 𝐿𝑛 ∙ 𝐶 ∙ 𝐷𝑛 2𝑁𝑚2 − 𝑚2 

𝐸−1 
1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

𝑣𝑒𝑐ℎ(𝑋) = 𝐸−1 ∙ 𝑣𝑒𝑐ℎ(𝑄) 2𝑚2 − 𝑚 

Proposed solution – Use of veck 

Matrix Operation Calculation Burden 

𝐹 ∙ 𝑄 2𝑛3 − 𝑛2 

𝑅 = 𝐹 ∙ 𝑄 − 𝑄 ∙ 𝐹𝑇 = 𝐹 ∙ 𝑄 − (𝐹 ∙ 𝑄)𝑇 𝑘 

𝐼𝑛⨂𝐹 0 

𝐹⨂𝐼𝑛  0 

𝐶 = 𝐼𝑛⨂𝐹 + 𝐹⨂𝐼𝑛  𝑁2 

𝐶 ∙ 𝑑𝑛 2𝑁2𝑘 − 𝑁𝑘 

𝑑𝑛
𝑇 ∙ 𝐶 ∙ 𝑑𝑛 2𝑁𝑘2 − 𝑘2 

𝐷 =
1

2
∙ 𝑑𝑛

𝑇 ∙ 𝐶 ∙ 𝑑𝑛 𝑘2 

𝐷−1 
1

6
(16𝑘3 − 3𝑘2 − 𝑘) 

𝑣𝑒𝑐𝑘(𝑆) = 𝐷−1 ∙ 𝑣𝑒𝑐𝑘(−𝑅) 2𝑘2 − 𝑘 

𝑆 − 𝑄 𝑁 
1

2
∙ (𝑆 − 𝑄) 𝑁 

𝐹−1 
1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

𝑋 =
1

2
∙ 𝐹−1 ∙ (𝑆 − 𝑄) 2𝑛3 − 𝑛2 

 

TABLE V.  CALCULATION BURDENS OF DISCRETE LYAPUNOV 

EQUATION SOLUTIONS 

Classical solution – Use of vec 

Matrix Operation Calculation Burden 

𝐼𝑛⨂𝐼𝑛 0 

𝐹⨂𝐹 𝑁2 

𝐶 = 𝐼𝑛⨂𝐼𝑛 − 𝐹⨂𝐹 𝑁 

𝐶−1 
1

6
(16𝑁3 − 3𝑁2 − 𝑁) 

𝑣𝑒𝑐(𝑋) = 𝐶−1 ∙ 𝑣𝑒𝑐(𝑄) 2𝑁2 − 𝑁 

Proposed solution – Use of vech 

Matrix Operation Calculation Burden 

𝐼𝑛⨂𝐼𝑛 0 

𝐹⨂𝐹 𝑁2 

𝐶 = 𝐼𝑛⨂𝐼𝑛 − 𝐹⨂𝐹 𝑁 

𝐿𝑛 ∙ 𝐶 2𝑁2𝑚 − 𝑁𝑚 

𝐸 = 𝐿𝑛 ∙ 𝐶 ∙ 𝐷𝑛 2𝑁𝑚2 − 𝑚2 

𝐸−1 
1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

𝑣𝑒𝑐ℎ(𝑋) = 𝐸−1 ∙ 𝑣𝑒𝑐ℎ(𝑄) 2𝑚2 − 𝑚 

Proposed solution – Use of veck 

Matrix Operation Calculation Burden 

𝐹 ∙ 𝑄 2𝑛3 − 𝑛2 

𝑅 = 𝐹 ∙ 𝑄 − 𝑄 ∙ 𝐹𝑇 = 𝐹 ∙ 𝑄 − (𝐹 ∙ 𝑄)𝑇 𝑘 

𝐼𝑛⨂𝐼𝑛 0 

𝐹⨂F  𝑁2 

𝐶 = 𝐼𝑛⨂𝐼𝑛 − 𝐹⨂F  𝑁 

𝐶 ∙ 𝑑𝑛 2𝑁2𝑘 − 𝑁𝑘 

𝑑𝑛
𝑇 ∙ 𝐶 ∙ 𝑑𝑛 2𝑁𝑘2 − 𝑘2 

𝐷 =
1

2
∙ 𝑑𝑛

𝑇 ∙ 𝐶 ∙ 𝑑𝑛 𝑘2 

𝐷−1 
1

6
(16𝑘3 − 3𝑘2 − 𝑘) 
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𝑣𝑒𝑐𝑘(𝑆) = 𝐷−1 ∙ 𝑣𝑒𝑐𝑘(𝑅) 2𝑘2 − 𝑘 

𝐹 ∙ 𝑆 2𝑛3 − 𝑛2 

𝑄 − 𝐹 ∙ 𝑆 𝑛2 

𝐹 ∙ 𝐹 2𝑛3 − 𝑛2 

𝐼 − 𝐹 ∙ 𝐹 𝑛 

(𝐼 − 𝐹 ∙ 𝐹)−1 
1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

𝑋 = (𝐼 − 𝐹 ∙ 𝐹)−1 ∙ (𝑄 − 𝐹 ∙ 𝑆) 2𝑛3 − 𝑛2 
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